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Abstract

This work is a treatise on three-dimensional sound recording. It explores the suit-

ability of spherical microphone arrays in music recording. A detailed discussion of

spatial audio theory culminates in a unified representation of sound fields using the

spherical harmonic transform. Diverse and alternative array architectures are sim-

ulated with regard to their performance. A mathematical model using a new error

measure is given and employed in the evaluation of different array layouts and their

possible imperfections. An implementation of the algorithms is shown and verified

in test recordings using an actual array construction. The obtained results lead to

an analysis and to possible improvements for the hardware and signal processing

chain.



Kurzfassung

Diese Arbeit ist eine Abhandlung über die dreidimensionale Schallaufnahme. Sie

basiert auf der Verwendung von kugelförmigen Mikrofonanordnungen um zu einer

einheitlichen Darstellung von Schallfeldern zu gelangen. Die Eignung dieser Tech-

nik für die Aufnahme von Musik wird untersucht. Eine ausführliche Diskussion

der Theorie räumlicher Schallausbreitung führt zu wichtigen Entwurfsrichtlinien für

den Bau derartiger Apparaturen. Die Zerlegung eines Schallfeldes in sphärische

harmonische Komponenten wird erklärt. Unterschiedliche Bauformen werden einer

Simulation unterworfen um die Güte der Bearbeitung zu beurteilen. Ein mathe-

matisches Modell unter Verwendung neuartiger Fehlergrössen wird vorgestellt und

bewertet verschiedene Anordnungen und deren Toleranzen. Eine Implementation

der Algorithmen zur Schallfeldzerlegung wird gezeigt und durch Aufnahmen mit

einer neuartigen Mikrofonanordnung verifiziert. Die derart gewonnenen Ergebnisse

werden analysiert und führen zu einer Aufstellung von Verbesserungen für die Ap-

paratur wie auch für die Signalverarbeitungskette.
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1 Introduction

Spatial recording of sound and music has a long and interesting history. Many

promising attempts were received with varying success by the music and technology

industry. A multichannel loudspeaker setup may still not suit the early 21st century

living room and its inhabitants. But the availability of array processing knowledge

and computing power leads to novel individual and institutional work. Spherical

microphone arrays are an exciting progression in spatial recording techniques. They

have been described by various authors giving design criteria and formulae for the

processing of captured sound fields. Usable implementations, their exploration and

audible results are still rare. There are many challenges in building microphone

arrays. The robustness of the algorithms varies with the chosen application. Music

recording imposes different requirements than room acoustics or speech processing.

Measurements can be achieved with a single microphone mounted on a robotic arm

as long as the system under test is time-invariant. The limited bandwidth suitable

in speech processing does not satisfy the capture of an orchestra performance. It

is the aim of this thesis to explain the theory and extend it to many different

spherical arrays describing incident sound fields and to verify the suitability for

music recording.

The applications for microphone arrays are manifold. Audio data can be treated in

various ways after the recording has been done, permitting spatial selection of differ-

ent sources and listening directions. An adjustable focus extends the stereo stage to

360 degrees, with microphone choice and placement adjustable in post-production.

Virtual microphones can be modeled resembling different sensitivity patterns and

steered into arbitrary directions. The inverse approach, canceling out unwanted

sources or noise, is equally feasible. Since the complete spatial representation of a

sound field is calculated, spherical arrays are perfect surround sound microphones

independent of distribution standards and speaker layouts. It is possible to derive

higher order Ambisonic signals as well as motion picture formats or stereo and bin-

aural representations. In room acoustics, the measurement of a three dimensional

impulse response does not only capture a room’s parameters such as reverb length

and frequency response but preserves a complete geometrical fingerprint identifying

walls and objects through acoustic holography. These spatial impulse responses are

crucial in authentic room simulation and reverberation. Adaptive filter techniques

use the spatial information presented by a microphone array to locate sound sources

in feedback suppression and noise cancellation algorithms.
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2 Fundamentals: Exterior and Interior Problems

Most of the procedures and limitations presented here are applicable to loudspeaker

and microphone arrays alike. The task common to all circumjacent microphone

arrays is to determine a field according to one or several sources. Applied to acoustics

this means that a sound field caused by one or several sources can be determined

for a certain area. To be more precise, it is pressure changes or air particle velocity

due to a sound source which is sampled by the array sensors. Once these values are

known it is possible to deduct the field according to equations known from theory

for any area vacant of additional sources [Wil99]. This task leads to the following

two scenarios:

2.1 Exterior Problem

Sound sources cause a sound pressure and sound particle velocity distribution at

any point in a volume. If this distribution is known along a surface enclosing these

sources, it is possible to determine the entire sound field outside of the outermost

source. This principle is shown in figure 1. Note that objects causing reflections

are considered secondary sources. The challenge at hand is to determine the outer

field, hence exterior problem. As an example, radiation analysis of sound sources

requires the solution of this problem. Array geometries are not necessarily limited

to spherical shells, but these allow for stable and elegant solutions as shown in this

work.

2.2 Interior Problem

Similar conditions arise in the complementary task, the determination of a sound

field caused by sources outside of the array. Provided that an interior volume is free

of sources and objects, the entire field up to the innermost source can be deducted

as sketched in figure 2. One application of interior problems is music recording

preserving spatial information.

2.3 Mixed Problem

The two problem sets above can be combined into a mixed problem, where sources

inside and outside of a volume to be described are known, or where two separated

fields outside and inside of a source area are to be determined. In a later section,

this mixed problem will be employed to compensate for the scattering effects of the

microphone construction on the sound field.
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Figure 1: Exterior problem: The shaded source free volume exterior to all sources
can be determined once its distribution is known on the entire surface S

Figure 2: Interior problem: The shaded source free volume interior to all sources
can be determined once its distribution is known along the surface S
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2.4 Boundary Value Problems

The mathematical foundation for the tasks above is provided by the Dirichlet and

Neumann boundary value problems for sound pressure and sound particle velocity,

respectively [AW01, p.758]. In Dirichlet boundary value problems a given value

(sound pressure) on a surface determines a valid solution from a set of partial dif-

ferential equations. In the case of the Neumann boundary value problem, it is the

value’s radial gradient (radial sound particle velocity) which is used as a boundary

condition [Wei09].

16



3 Spatial Fourier Transforms and the Spherical

Wave Spectrum

3.1 Coordinate Systems

The spherical coordinate system used throughout this entire text is the ISO 33-11

standard [TT08], which is a right hand coordinate system with the thumb resembling

the X-axis, index finger Y-axis and middle finger the Z-axis.

The corresponding angles in spherical coordinates are the inclination or zenith angle

theta ϑ from the Z axis ranging from 0◦ to 180◦, and the azimuthal angle phi ϕ

counted positive in counterclockwise direction from the XZ plane along 0◦ to 360◦.2

It is convenient to encode the two angles (ϑ, ϕ) into a unit vector θ of radius one:

θ =







cos(ϕ) sin(ϑ)

sin(ϕ) sin(ϑ)

sin(ϑ)






(1)

3.2 Spherical Harmonics

A distribution on a spherical surface can be represented by a superposition of spher-

ical harmonics. These harmonics are solutions to the spherical harmonic differential

equation, the angular part of Laplace’s equation in spherical coordinates [Wei09].

For most applications it is sufficient to use real-valued spherical harmonics [Zot09a].

Their argument is the angle θ. Spherical harmonics exist for different orders n due

to their dependency on the degree of an associated Legendre polynomial. Every

order n is represented by (2n+ 1) modes, which are labeled m ranging from −n to

n, as shown in figure 3.

3.2.1 Real-valued spherical harmonics

The real-valued spherical harmonics are given as [Wil99, p.191]:

Y m
n (θ) = Nm

n P
|m|
n (cos(ϑ)) sin(mϕ) for m < 0 (2)

Y m
n (θ) = Nm

n P
m
n (cos(ϑ)) cos(mϕ) for m ≥ 0 (3)

where Pm
n (cos(ϑ)) denotes an associated Legendre function.

2Note that some numerical computation programs such as GNU Octave [Oct] employ a different
scheme here, with phi ϕ denoting an elevation angle reaching ±90◦ up and down from the XY
plane, and the azimuthal angle designated theta ϑ.
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Figure 3: Magnitude of real-valued spherical harmonics plotted as radius, for differ-
ent orders n and associated modes m [Pom08]

The normalization constant Nm
n is given as:

Nm
n = (−1)|m|

√

(2n+ 1)(2 − δ[m])

4π

(n− |m|)!
(n+ |m|)! (4)

These normalized real-valued spherical harmonics form a complete set of orthonor-

mal base functions.

3.2.2 Orthonormality

The orthonormality of spherical harmonics is shown by the integral of two harmonics

along a sphere, which equals zero for different indices and one for equal indices.

∫ 2π

ϕ=0

∫ π

ϑ=0

Y m
n (ϑ, ϕ)Y m′

n′ (ϑ, ϕ) sin(ϑ) dϑdϕ = δ(n− n′)δ(m−m′)

And using the more concise unit vector θ notation

∫

S2

Y m
n (θ)Y m′

n′ (θ) dθ = δ(n− n′)δ(m−m′) (5)

where δ denotes Kronecker’s delta function, and the integral being

∫

S2

dθ =

∫ 2π

ϕ=0

∫ π

ϑ=0

sin(ϑ) dϑdϕ (6)
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3.3 Spherical Harmonic Transform

The transform of a distribution on a sphere into spherical harmonics is a transform

of a periodic function into its orthonormal components, as familiar from Fourier

transforms of time domain signals. For every order n and mode m the integral over

all possible angular positions on a sphere gives the correlation of the function with

the transform kernel, the respective spherical harmonic. It is therefore possible to

refer to the spherical harmonic transform as a spatial Fourier transform. Instead of

a frequency variable ω it is now the harmonic’s indices n, m which allow to choose

components of the resulting angular spectrum.

3.3.1 Spherical harmonic transform

The analysis or transform of a function g(ϑ, ϕ) into spherical harmonics coefficients

γnm is defined as [Raf05]:

SHTnm {g(ϑ, ϕ)} = γnm =

∫ 2π

ϕ=0

∫ π

ϑ=0

g(ϑ, ϕ)Y m
n (ϑ, ϕ) sin(ϑ) dϑdϕ

And in unit vector notation:

SHTnm {g(θ)} = γnm =

∫

S2

g(θ)Y m
n (θ) dθ (7)

Note that the unit vector notation will be used from now on. Refer to (1) and (6)

for conversion.

In analogy to a Fourier transform resulting in a frequency spectrum, the arbitrary

function g(θ) on a spherical surface is now given as γnm, being the result of a

spherical harmonic transform (SHT ). The initial function is now represented in the

spherical harmonic spectrum.

It is important to note that the total amount of spherical harmonics is infinite here.

It will be shown later that finite numbers of harmonics can be used in an imple-

mentation giving approximate results. The higher the order of spherical harmonics

considered, the better the angular representation of the transformed function. This

leads to the notion of angular bandwidth, which is infinite for an endless number of

harmonics. The infinite transform results in a perfect representation for arbitrarily

narrow functions in the angular sense. The function g(θ) is assumed to be defined

and valid at any position on the sphere, which is not given using actual array sen-

sors. The effects of a finite set of harmonics, and of functions sampled at discrete

points are crucial to the performance of any microphone array and are discussed in

this work.
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3.3.2 Inverse spherical harmonic transform

The inverse spherical harmonic transform (ISHT ) or expansion of a spherical har-

monic spectrum into the function g(θ) is achieved by the infinite sum along all

components m,n at the angular position θ:

ISHTnm{γnm} =
∞

∑

n=0

n
∑

m=−n

γnm Y
m
n (θ) = g(θ) (8)

3.3.3 Completeness

The completeness of the spherical harmonics transform transform using infinite har-

monics can be shown by a forward transform followed by an inverse transform re-

sulting in the original function.

ISHTnm{SHTnm {g(θ)}} = g(θ) (9)

3.3.4 Parseval’s theorem

The orthonormality property (5) and the completeness of the spherical harmonic

transform [AW01] fulfill Parseval’s theorem, which describes the unitarity of the

spherical harmonic transform the same way as it does for other transforms [Zot09b].

∫

S2

|g(θ)|2dθ =
∞

∑

n=0

n
∑

m=−n

|γnm|2 (10)

3.3.5 Spherical harmonic spectra in audio engineering

One way of understanding the usefulness of spherical wave spectra in audio engi-

neering is to think of them as an extension to the M/S microphone technique. In

this microphone arrangement two capsules are mounted as closely together as possi-

ble, effectively recording the same sound field, but with different microphone pickup

patterns as shown in figure 4. If for example an omnidirectional microphone is used

along a figure-of-eight microphone, the listening direction in the stereo panorama

can be determined at playback by combining the two signals at different levels and

phases. This encoding of signals into mid and side components was invented by Alan

Blumlein in his classic 1931 patent on stereophonic sound reproduction [Blu58]. An

extension of this approach was described by Michael Gerzon in 1973 [Ger72] and

became the system known as Ambisonics. It allows to capture the horizontal as well

as the vertical dimension. First introduced as a procedure to reproduce a sound

field using four loudspeakers, it is in fact a spherical harmonics representation of

20



Figure 4: The M/S microphone technique: Combination of the omnidirectional
microphone signal and the positive or negative figure-of-eight microphone signal
allows to change the microphone’s polar pattern and orientation after the recording
has been done

order N = 1, requiring four channels of audio. Similarly to the M/S technique these

four channels, labeled WXY Z, consist of an omnidirectional W channel and three

figure-of-eight channels XY Z which are rotated according to the three modes m at

order n = 1. This encoding scheme is known as the B-format. Due to the large

physical extension of four microphone capsules it is not possible to place them in

exactly the same spot. A microphone layout suited for order N = 1 was invented

by Gerzon and Craven [Ger75] and built as a commercial product by Calrec and

later marketed as the Soundfield microphone. It consists of four cardioid capsules

arranged on the four surfaces of a tetrahedron. By matrixing the microphone sig-

nals and attempting to compensate for capsule distances with frequency filters, the

first order Ambisonics B-format signals are derived. The origins of this approach

can be seen as a first attempt at reconstructing sound fields using acoustic holog-

raphy, which is discussed in a later section. Ambisonic microphones share the two

challenges crucial to any spherical microphone array application: Decomposition of

the sound field into spherical harmonics and filtering the signals according to the

capsule placement.

21



4 Sources in the Spherical Harmonic Spectrum

To allow directivity by considering the radial properties of the recorded sound field,

and to compensate for a microphone array’s physical dimensions, the laws of sound

propagation have to be taken into account. This is simplified by the representation

of sound pressure and sound particle velocity in the spherical harmonic spectrum.

4.1 Sound Pressure and Particle Velocity

4.1.1 Spherical harmonics representation of sound pressure

The transformed sound pressure ψm
n (kr) is represented by spherical harmonics n,m

and is therefore independent on the angle θ. It incorporates the entire angular

information and is merely dependent on (kr), the radius r at which the sound

pressure is determined, and the wave number k = ω
c

denoting frequency [Zot09a]:

ψm
n (kr) = SHTnm{p(k, r, θ)} = bnmjn(kr) + cnmh

(2)
n (kr) (11)

In this equation jn(kr) is the spherical Bessel function, and h
(2)
n the spherical Hankel

function of the second kind. bnm are the coefficients of the incident wave jn(kr),

and cnm are the coefficients of the radiating wave h
(2)
n (kr). Refer to appendix A for

more details on the functions involved.

4.1.2 Spherical harmonics representation of sound particle velocity

The spherical harmonic transformed radial component of the sound particle velocity

νm
n (kr) is given as [Zot09a]:

νm
n (kr) = SHTnm{v(k, r, θ)} =

i

ρ0c

[

bnmj
′
n(kr) + cnmh

′(2)
n (kr)

]

(12)

The spherical Bessel and Hankel functions are given as derivatives with regard to

(kr). They can be computed using the recurrence equation (69) derived in ap-

pendix A.

4.1.3 Example: Spherical harmonics expansion

The sound pressure p(k, r, θ) for frequency k at any point (r, θ) can be determined

by expansion of a spherical spectrum into the pressure function. This expansion is
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the inverse spherical harmonic transform (ISHT ):

p(k, r, θ) =
∞

∑

n=0

n
∑

m=−n

ψm
n (kr) Y m

n (θ)

=

∞
∑

n=0

n
∑

m=−n

[

bnmjn(kr) + cnmh
(2)
n (kr)

]

Y m
n (θ)

4.2 Point Sources and Plane Wave Sources

The coefficients bnm and cnm resulting from the spherical harmonic transform rep-

resent the components of the wave field. They can be formulated in the spherical

harmonics domain:

4.2.1 Incident plane wave

An incident plane wave at a listening point θ is caused by a source located at

infinity. Coefficients bnm for an incident plane wave arriving from source direction

θs are given as [Zot09a]:

bnm = 4πinY m
n (θs) (13)

With this knowledge and the sound pressure given in (11) it is easy to state the

sound pressure spectrum caused by a plane wave:

ψm
n = SHTnm{p(k, r, θ, θs)} = 4πinjn(kr)Y m

n (θs) (14)

The corresponding sound particle velocity of an incident plane wave is:

νm
n = SHTnm{v(k, r, θ, θs)} = 4π

in+1

ρ0c
j′n(kr)Y m

n (θs) (15)

Using the inverse spherical harmonic transform, the actual sound pressure can now

be computed for the listening point (r, θ)

p(k, r, θ, θs) = ISHTnm{ψm
n }

By definition, there is no such thing as a radiating plane wave because the listener

would have to be positioned at infinity.
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4.2.2 Spherical wave of a point source

The coefficients bnm for an incident spherical wave of a point source located at source

radius and angle (rs, θs) and listening point (r, θ), where radius r ≤ rs, are [Zot09a]:

bnm = −ikh(2)
n (krs)Y

m
n (θs) (16)

When r > rs, the wave is radiating and the coefficients result in:

cnm = −ikjn(krs)Y
m
n (θs) (17)

Hence for the spherical wave of a point source, the sound pressure in the spherical

harmonic spectrum is:

ψm
n = −ikh(2)

n (krs)jn(kr)Y m
n (θs) (18)

The sound particle velocity of an incident spherical wave can be computed in the

same way, resulting in:

νm
n =

k

ρ0c
h′(2)n (krs)j

′
n(kr)Y m

n (θs) (19)

With these prerequisites taken, the analysis of a sampled sound field according to

its wave nature is possible.
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5 Capsules and Outer Space:

Holography Filters and Radial Filters

Depending on the type of microphones used, the spherical harmonic transform of

the microphone signals yields a pressure, or combination of pressure and velocity

spectrum at the microphone radius rd. The next step is to derive a holographic

spectrum representing the entire sound field at any radius up to the innermost

source. This holographic spectrum identifies the entire source free volume as given

in the interior or exterior problem, and is the result of acoustic holography. The

step from the sensor spectrum to the entire holographic representation is done by

means of a holography filter. After this step, the holographic spectrum can be

evaluated at a source radius rs using a radial filter. The inverse spherical harmonics

transform of the spectrum at this source radius gives the actual source amplitude.

The holography filter extrapolates the description of the entire sound field from the

sensor signals, while the radial filter selects a spectrum at one desired source radius.

5.1 Open versus Closed Spherical Arrays:

A Reflective Subject

In cases where a spherical microphone array has dimensions causing scattering of

a sound field, or if the array is based on a rigid sphere design, the presence of a

physical object violates the requirement of a source free volume, as stated in the

interior problem in section 2.2. A combination of the internal and external problem

addresses this question as a mixed problem:

5.1.1 Reflections from a rigid sphere, mixed problem

The reflections from a rigid and sound-hard spherical surface of radius rk is consid-

ered a secondary source within the measurement radius. Pressure ψm
n and velocity

νm
n given in the spherical harmonic spectrum lead to the following formulation:

The sound particle velocity on a completely hard surface at radius rk has to become

zero [GW06]. In terms of incident and radiating wave it can be stated that

νm
n,incident(krk) + νm

n,radiating(krk) = 0 (20)

With the radiating and incident velocities given in (12), this condition becomes:

i

ρ0c

[

bnmj
′
n(krk) + cnmh

′(2)
n (krk)

]

= 0 (21)
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Assuming the spectrum bnm is known, the reflected (radiated) coefficients cnm can

be written as

cnm = bnm

j′n(krk)

h
′(2)
n (krk)

(22)

This is a simplification, since most physical material is not entirely sound-hard. For

a more precise description the acoustic impedance of the object must be taken into

account. It is favorable to achieve a representation of this impedance in the spherical

harmonic spectrum.

A rigid sphere is assumed to be surrounded by microphone diaphragms at a radius

rd > rk. The pressure ψm
n (krd) and velocity νm

n (krd) at the microphone radius can

be expressed as already shown in (11) and (12), now including the reflected radiating

coefficients cnm from above (22).

ψm
n (krd) = bnm

[

jn(krd) −
j′n(krk)

h
′(2)
n (krk)

h(2)
n (krd)

]

(23)

νm
n (krd) =

i

ρ0c
bnm

[

j′n(krd) −
j′n(krk)

h
′(2)
n (krk)

h′(2)n (krd)

]

(24)

By using the values deducted here as a model for the propagation and scattering of

incident waves, all effects of a spherical body can be compensated.

5.2 Holography filters for different array architectures

Depending on the design of the array construction the holography filter has very

different properties. For arrays built around an open or rigid sphere, and for those

using omnidirectional pressure microphones or cardioid ones, a different filter specifi-

cation is required. It will be shown that the microphone radius rd imposes a trade-off

between a good signal-to-noise ratio for low frequencies and spatial resolution for

high frequencies.

5.2.1 Open sphere with omnidirectional microphones

The spherical harmonic transformed measurement value at the microphone outputs

is denoted χm
n (krd). For an open array consisting of omnidirectional pressure micro-

phones at rd the relation of this value to incident sound pressure waves is

χm
n (krd) = ψm

n (krd) = bnmjn(krd) (25)
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To determine bnm, the holographic spectrum for the entire source free volume, the

measured value has to be divided by the term jn(krd), a spherical Bessel function

dependent on the product of frequency k and microphone radius krd, which has

several zeros. This would mean infinite gain at certain frequencies which can not be

implemented.

5.2.2 Open sphere with cardioid microphones

The problem of inverting a function containing zeros can be avoided by using cardioid

microphones facing outwards from an open sphere. Since cardioid microphones mea-

sure the sound pressure as well as the sound particle velocity their output χm
n (krd)

is the following combination [BR07, Zot09a]:

χm
n (krd) = ψm

n (krd) − ρ0cν
m
n (krd) (26)

With substitution of pressure (11) and velocity (12) the above relation becomes

χm
n (krd) = bnm [jn(krd) − ij′n(krd)] (27)

The absolute difference of the Bessel function jn(krd) and its derivative ij′n(krd) has

no zeros. Division of the sensor spectrum χm
n (krd) by this difference is perfectly fea-

sible. This filter’s complex value (magnitude and phase) is dependent on frequency

k as well as on the microphone radius rd. The magnitude of the filter values for

different orders N is shown in figure 5 for a capsule radius of 70 mm. Although

the dimension of the array has influences on other performance parameters such as

spatial resolution alike, the radius is inversely proportional to the magnitude of the

filter at low frequencies. This filter gain in combination with the microphone’s noise

floor imposes a lower limit to the usable frequency range of an array. A comparison

of different radii at a given order is shown figure 6.

5.2.3 Closed sphere with omnidirectional microphones

Inverting a function containing zeros can be also be avoided by placing microphones

around a rigid sphere, and compensating for its effects on the sound field as shown

in (23). For pressure microphones this results in the relation

χm
n (krd) = ψm

n (krd) = bnm

[

jn(krd) −
j′n(krk)

h
′(2)
n (krk)

h(2)
n (krd)

]

(28)
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Figure 7: Cardioid microphones around a rigid sphere, with radii for reflective sur-
face rk, diaphragms rd, and innermost source rs given

which has no zeros and can be inverted. For a figure of this filter’s magnitude refer

to [BR07] and to figures 9 and 10 with rd = rk.

5.2.4 Closed sphere with cardioid microphones

In cases where cardioid microphones are used, and the microphone construction

is large enough to be considered a reflective spherical object, it is important to

keep a minimum distance between the rigid sphere and the back of the capsules.

Cardioid microphones get their directional sensitivity from an opening in the casing

at the back of the capsule. If such a microphone would be flush mounted into a

hard sphere and no sound pressure would arrive at the back its response would be

omnidirectional. Cardioid diaphragms at radius rd combine pressure and velocity

components of the incident and radiating field [BR07, Zot09a] into a measure value

denoted χm
n (krd) as already shown in (26). The measured value can now be expressed

in terms of the incident field and the reflected field off the sound-hard sphere at

radius rk, as derived in (23) and (24):

χm
n (krd) =

[

jn(krd) − ij′n(krd) +
(

ih′(2)n (krd) − h(2)
n (krd)

) j
′

n(krk)

h
′(2)
n (krk)

]

bnm (29)

To determine the holographic spectrum bnm the bracketed reflection and propagation

term has to be inverted. This gives a filter function dependent on the wave number
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Figure 8: Cardioid microphones around a rigid sphere of radius rk: Example of
holography filter magnitude for different orders N

k with the two radii considered constant. An example of this filter’s magnitude is

shown in figure 8. The extreme gain for high orders at low frequencies is a challenge

in an implementation and limits the usable frequency range. Even if the recorded

source would not emit low frequencies, the microphone’s own noise (thermal noise,

quantization noise, etc. ) is present in these low frequencies and would be amplified.

It is inherently the microphone’s signal-to-noise ratio which limits the use of high

orders at low frequencies.

The effect of the reflective sphere is demonstrated best by giving the filter magni-

tude for different radii rk as shown in figure 9 and 10 for orders N=1 and N=2

respectively.
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raphy filter magnitude for N=2

31



5.3 Radial Filters: Focusing on a Source

At this point the representation of incident waves in the spherical harmonics domain

is complete. The holographic spectrum bnm allows the evaluation of the source

amplitudes at any radius up to the source radius itself. This evaluation is done

with a radial filter. As shown in (16), the spectrum bnm for spherical waves is

dependent on the source radius rs. To end up with a spherical harmonic spectrum

φm
n representing the sources complex amplitude at the desired radius, the division

bnm

−ikh
(2)
n (krs)

= φm
n (30)

defines this radial filter for spherical waves. It has a different value for different

frequencies k and requires the definition of a source radius rs. In accordance to

theory this should be the radius of the actual source, or that of the innermost source

if multiple sources are present. For plane waves the simpler term bnm = 4πinY m
n (θs)

(15) is independent of a source radius. In the figures given so far as well as in the

remainder of this thesis, this simplification was made under the assumption of plane

waves for sources at radius krs ≥ 1 and low orders N as discussed in appendix A.4.

The results from this simplification are not universally valid but are assumed to be

accurate enough for the discussion of the filters at hand.

5.4 Holography

It is important to relate to the term “acoustic holography” coined by Maynard,

Williams and Lee [MWL85]. With bnm deferred from the microphone data, it is

possible to reproduce the sound field at any point in the source free volume according

to its angular representation, the spherical harmonic spectrum and the selection of a

radius with a radial filter. This ability and associated procedures are called spherical

acoustic holography, in analogy to the well-known technique in optics. In accordance

to reproduction systems in the line of the gramophone, the playback of the spatial

sound field can be described as acoustic holophony. Ambisonic playback systems

such as the IEM CUBE [ZSR03] form a subset of holophonic systems. Microphone

arrays are the sensing element in acoustic holography. An application and visual

representation of spherical holography follows in section 11.
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6 Limited Order Harmonics: Discrete Transforms

The amount of points sampling a distribution on a surface is restricted by the size

of the microphone capsules and physical dimensions of the array hardware. In order

to obtain an infinite spherical harmonics representation as introduced in section 3,

the number of microphones would need to be infinitely large, and their physical

dimensions infinitely small. In every real microphone array the amount of sample

points is therefore limited, and so is the maximum order of spherical harmonics N ,

which will provide (N + 1)2 harmonics in total, as can be derived from figure 3.

6.1 Discrete Spherical Harmonic Transform

A set of L measurement positions on the surface of a sphere samples the distribution

at discrete positions. A given relation restricts this discrete set to be represented

using a limited amount of spherical harmonics only. The result is an approximation

of the sound field which lacks high angular resolution or bandwidth. Sources which

are very narrow would need more and higher harmonics to be described completely.

As with every sampling application, the highest possible frequency to be represented

depends on the sampling rate. This relation is known as the Nyquist-Shannon

sampling theorem. Its spatial and spherical version is given as the relation [Zot09b]

(N + 1)2 ≤ L (31)

Spatial aliasing is dependent on the amount and spacing of microphone capsules

and increases with frequency. Wavelengths whose dimensions are small compared

to the gap between microphones can not be sampled with sufficient angular reso-

lution. This causes aliased copies to be mirrored into lower harmonics. It is this

consequence limiting the usable frequency range towards high frequencies.

In order to study discrete spherical harmonic transforms, the inverse transform for

limited order N is given first, using a matrix notation. Unlike the infinite transform

(8) this finite sum is now limited by the relation (N + 1)2 ≤ L. The result of

expanding the spherical harmonic spectrum γnm using harmonics up to order N

yields the value of the band-limited function g(θ) at the measurement point.

g(θ) =

N
∑

n=0

n
∑

m=−n

Y m
n (θ)γnm (32)

To extend this expansion to multiple points a vector gL holding all L measurement
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values is defined:

gL =

















g0(θ0)

g1(θ1)

.

.

gL(θL)

















Accordingly, a vector γN with spherical harmonics coefficients for all orders N and

modes m = −n to n is given as

γN =



























γ00

γ1−1

γ10

γ11

.

.

γNM



























, holding (N + 1)2 entries

A matrix YN consisting of L rows holds values of spherical harmonics evaluated at

positions (θL). All orders N and their modes m = −n to n are represented within

the matrix dimensions L x (N + 1)2

YN =

















Y 0
0 (θ0) Y −1

1 (θ0)Y
0
1 (θ0)Y

1
1 (θ0) ... Y N

M (θ0)

Y 0
0 (θ1) Y −1

1 (θ1)Y
0
1 (θ1)Y

1
1 (θ1) ... Y N

M (θ1)

...

...

Y 0
0 (θL) Y −1

1 (θL)Y 0
1 (θL)Y 1

1 (θL) ... Y N
M (θL)

















(33)

6.1.1 Discrete inverse spherical harmonic transform

The finite sum as given in (32) can now be rewritten for L multiple sensor points as

the inner product of matrix YN and vector γN [Zot09b]:

DISHTN{γN} = YN γN = gL (34)
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6.1.2 Discrete spherical harmonic transform

The discrete spherical harmonic transform (DSHT ) requires the inversion of the

matrix YN :

DSHTN{gL} = γN = Y −1
N gL (35)

The order N of the transform determines the number (N+1)2 of spherical harmonics

coefficients in the resulting vector γN . Since the number of rows in the matrix YN is

the amount of microphones L, only configurations with L = (N + 1)2 will allow for

YN to be a square matrix and invertible. For non-square matrices, a pseudo-inverse

has to be used, giving only an approximate result. A value indicating the accuracy

of this approximation is the condition number of the matrix to be inverted.

6.1.3 Angular band limitation

Speaking of finite order spherical harmonics, the completeness property of the trans-

form is no longer valid. The expansion of an infinite harmonic spectrum Y m
n (θs)

yields a spatial impulse for equal angles [Zot09a]:

∞
∑

n=0

n
∑

m=−n

Y m
n (θs) Y

m
n (θ) = δ{θs − θ} (36)

For a finite number of harmonics this sum can be rewritten as inner product of

two vectors, resulting in a band-limited angular impulse. This band limitation is

represented by a function BN without further definition.

yN(θs)yN(θ) = BN{δ(θs − θ)} (37)

6.1.4 Finite order energy

Regarding the energy of a spherical harmonic spectrum, the surface integral over

the band-limited function corresponds to a finite sum of its coefficients, which can

be expressed by a vector norm:

∫

S2

|BN{g(θ)}|2 dθ

=
N

∑

n=0

n
∑

m=−n

|γnm|2

= ||γN ||2
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6.2 Limited Order Holography Filters

The holography filter deriving the holographic spectrum bN from the spectrum of

the microphone signals as derived in section 5 can be given in finite resolution matrix

notation as well:

bN = H−1
N χN (38)

The filter matrix HN consists of diagonal elements hn(k), which must not to be

confused with the spherical Hankel functions h
(1)
n and h

(2)
n . Since the same value

hn(k) is repeated for the associated modes m in the diagonal, HN has dimensions

(N + 1)2 x (N + 1)2 and is of the following structure:

HN =















h0(k) 0 . . . 0

0 h1(k) . . .
...

...
...

. . .
...

0 . . . . . . hN (k)















(39)

The values of the elements hn(k) depend on the holography filter for the respec-

tive array configuration as already shown in section 5.2. For an array of cardioid

microphones around a rigid sphere these elements are (29):

hn(k) =

[

jn(krd) − ij′n(krd) +
(

ih′(2)n (krd) − h(2)
n (krd)

) j
′

n(krk)

h
′(2)
n (krk)

]

(40)

6.3 Discrete Radial Filters

The source amplitude spectrum φN itself can be derived from the coefficients bN

with further division by a term dependent on the source radius, the radial filter.

This division, shown for spherical waves in (30), can be expressed as the inverse of

the square matrix PN :

φN = P−1
N bN (41)

For plane waves arriving from direction θs, the elements of bN were given as (13)

bnm = 4πinY m
n (θs)
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and lead to a PN having the structure:

PN =















4π 0 . . . 0

0 4πi . . .
...

...
...

. . .
...

0 . . . . . . 4πiN















(42)
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7 Sensor Layout on a Sphere

Sampling a distribution requires a dense and uniform arrangement of sensors on a

spherical surface. The same is true for loudspeaker arrays consisting of many in-

dividual drivers. For numbers of up to 20 such elements, the platonic solids with

their regular structure are ideal choices. With microphone capsules considered small

points, they are best arranged on the corners of vertices. Compact spherical loud-

speaker arrays generally take a somewhat different approach: Their emitted energy

and frequency range is relative to the size of the driver employed, and the areas

or faces of platonic solids are used to mount loudspeakers. A survey of isotropic

radiation capabilities for the five platonic solids has been conducted by [Tar74].

Individual control of loudspeaker elements in radiation pattern synthesis has been

explored by [WDC97] amongst others. A spherical loudspeaker array with 120 el-

ements constructed in [AFKW06] is based on an icosahedron with each of its 20

triangular faces packed with six elements. Further theory and hardware regarding

spherical loudspeaker arrays has been developed by [ZH07]. Different design strate-

gies for loudspeaker layouts in periphonic sound spatialisation have been suggested

by [Hol06]. As an alternative approach, a truncated icosahedron offering 12 pen-

tagons and 20 hexagons as faces was used in [ME02] to mount a microphone capsule

on the center of each face. An optimization demanding orthogonality is used in

the T-designs introduced by [HS96], and explored for audio applications in [Li05]

as well as in [Pet04], where an implementation with 64 microphones is presented.

A sampling scheme on a Lebedev grid was used in [S+07] with a relocatable single

microphone element. A layout optimized for square matrices and invertability has

been discussed in [Zot09b] and employed in a 64 element enclosing array [Hoh09].

The spherical microphone array tested in the following section 11 is of the same

layout as the 120 element icosahedral loudspeaker array mentioned above, which

will be abbreviated “m120”. Its sensor positions are shown in figure 11.
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Figure 11: The “m120” microphone layout around an icosahedron

39



8 Finite Resolution Sampling and its Effects

Two important errors arise in the discrete spherical harmonic transform (DSHT)

with its finite number of sampling points and therefore limited angular resolution:

Narrow sources, or components thereof, are not included in the resulting spectrum

which results in a truncation error as derived below, or shown for Ambisonic loud-

speaker systems by [WA01].

Lower order spherical harmonic decomposition of high angular bandwidth distribu-

tions inevitably introduces spatial aliasing. Narrow components are mirrored into

lower harmonics causing an aliasing error [Raf05].

A more universal measure as extension to the aliasing error is formulated in this

work as a holographic error.

The introduction of these error measures is based on the analytic formulation of a

known incident wave which is subjected to spatial sampling and discrete spherical

harmonic transform. This reconstructed wave is then compared to the original. As

part of this simulation positioning errors and gain deviations can be evaluated, as

shown in the subsequent section 9. The analytic incident wave is synthesized using

spherical harmonics expansion (8) of a plane wave in accordance with the far field

condition krs < 1.

8.1 Truncation Error

The truncation error designates the discarded part of a spherical harmonic spectrum

derived from a transformation of finite order N . No aliasing effects are taken into

account. For sound pressure or velocity spectra the energy difference between the ac-

tual source and the decomposition result is determined. The normalized truncation

error τN (krd) for plane waves is given in [WA01] as:

τN (krd) = 1 −
N

∑

n=0

(2n+ 1)|jn(krd)|2

It is clearly dependent on the decomposition order N , the frequency k and the

microphone radius rd. Figure 12 shows the truncation error in dB versus frequency

for different orders N and microphone radius rd = 69mm.

There is still a need for listening tests and evaluation data in order to find the

biggest acceptable value of this error with regard to listener perception and source

localization. Since truncated spectra merely lack angular detail but do not contain

false directional information, the impact of truncation may be valued smaller than
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Figure 12: Truncation error τN (krd) for different orders N and capsule radius rd =
69mm

that of aliasing.

8.2 Aliasing as Matrix Product

In the survey of spatial aliasing the microphone signal vector x of length L is syn-

thesized by spherical harmonics expansion. This requires the use of finite order

harmonics and matrix notation. It is impossible to formulate a spherical harmonics

matrix Y∞ (33) of infinite dimensions. An approximation of infinite spherical har-

monics expansion is achieved by choosing the dimensions exp of a matrix Yexp high

enough. The spherical harmonic spectrum χexp of the microphone signals has the

same high resolution and is derived from its continuous version, equation (26). This

spectrum is expanded into the microphone signals x.

x = Yexpχexp (43)

The order exp should be chosen as high as possible. A rule of thumb taking frequency

and microphone radius into account is given in [WA01] as exp > krd, where exp

is rounded to the next largest integer. This relation is shown in figure 13 for a

microphone capsule radius of 70 mm.

The distribution χexp is sampled at the L microphone positions, and transformed
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into a spherical harmonic spectrum by Y −1
N , a matrix of smaller dimensions and

more limited resolution.

χ̂N = Y −1
N Yexpχexp (44)

The result is the lower resolution spectrum χ̂N , which contains coefficients distorted

by high harmonics mirrored into the lower ones.

In analogy to aliasing in discrete time domain signal processing, this description of

the sampling mechanism itself does not yet give information about the amount of

aliasing appearing at the output. For time series sampling this amount is dependent

on the input signal frequency. For spatial sampling this translates to high angular

bandwidth at the input. The position and narrowness of the source at hand deter-

mine how many of the aliased coefficients are excited how much, and are therefore

present in the output.

If the order of both transformation matrices was N = exp, the result would be an

identity matrix due to the orthogonality of spherical harmonics. In this special case

the sampled spectrum would be identical to the analytic spectrum. The accuracy

of the retrieved coefficients is clearly dependent on the matrix product Y −1
N Yexp.

A sampling matrix of order N < exp causes aliasing in the right-hand rows of the

matrix product. A possible structure of spatial aliasing in the product Y −1
N Yexp is
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Figure 14: Spatial aliasing in columns representing orders > N

shown in figure 14. The columns right of the diagonal represent orders larger than

N . Incident waves with higher angular bandwidth excite these columns, which are

reflected into the coefficients χ̂N as aliased signals.

8.3 Condition Number in Matrix Inversion

In addition to the aliasing introduced by finite spherical harmonic transforms, the

inverse Y −1
N of any non-square matrix is inexact due to numerical approximation

techniques. The matrix condition number c gives a measure for the precision of this

result. It is defined as the ratio of the largest to smallest singular value of the matrix

[Wei09]. The condition number for the inverse of a matrix combining HN and YN

has been shown to influence the orthogonality of the transform in [Raf08]. For the

“m120” layout, the values for the condition number c of the matrix YN with regard

to the order N are:

N c

1 1

2 1.0001

3 1.0407

4 1.0496

5 1.0778

6 1.1882

7 1.1914

8 1.2349

9 3.2901

8.4 Aliasing Error

It is desirable to derive a more tangible measure for spatial aliasing. An error vector

εN in the spherical harmonics domain can be defined as the difference between the
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sampled coefficients χ̂N including aliasing, and the analytically derived clean and

band-limited coefficients χN :

εN = χ̂N − χN (45)

The aliased coefficients χ̂N are the result of a discrete spherical harmonic transform

of the microphone signals as already introduced in equation (35).

χ̂N = Y −1
N x

The microphone signals x on the right hand side of the equation are analytically

generated using spherical harmonics expansion of the spectrum χexp at high order

exp as shown in (43).

χ̂N = Y −1
N Yexpχexp

In accordance with holography filters, as introduced in section 5.2, the analytic

coefficients χexp resembling the microphone signals can be rewritten as the product

of a holography filter matrix Hexp and the holographic spectrum bexp. The elements

of bexp can be given for spherical (13) or plane waves (16).

χ̂N = Y −1
N YexpHexpbexp (46)

In the same fashion χN , the analytic version of the coefficients, is written as the

product of filter matrix HN and the vector bN :

χN = HNbN

At this point the aliasing vector for any incident sound field is expressed as the

difference of analytic and aliased coefficients:

εN,exp = Y −1
N YexpHexpbexp − HNbN (47)

This error spectrum is dependent on the sampling order N , on the maximum angular

bandwidth exp allowed, on the frequency k of the filter matrices H , on the micro-

phone positions intrinsic to matrices YN and Yexp, and on the radial and angular

position of the incident wave bN .

The holographic spectrum bN can be separated into two parts, the radial filter matrix

PN and the spherical harmonics vector yN(θs) dependent on the source angle.

bN = PNyN(θs) (48)
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A simplified aliasing error spectrum for plane waves can thus be rewritten as:

εN,exp = Y −1
N YexpHexpPexpyexp(θs) − HNPNyN (θs) (49)

By concatenating an (NxN) identity matrix with (exp− N) rows of zeros, yN(θs)

can be rewritten as a truncated version of yexp(θs)

yN(θs) = [I O]yexp(θs)

The aliasing error is now

εN,exp =
[

Y −1
N YexpHexpPexp − HNPN [I O]

]

yexp(θs) (50)

This expression of the aliasing error describes the deviation between the real and

sampled distribution on the surface of the array as defined in (45) above.

8.5 Holographic Error

The accuracy in depicting the original sound source demands an extension to the

aliasing error: The error as presented in (50) is divided by the holography and

radial filter matrices H−1
N P−1

N to derive a holographic error σN,exp. This error now

denotes the difference between the actual sound source itself and its aliased replica

from holography.

σN,exp = P−1
N H−1

N εN,exp =
[

P−1
N H−1

N Y −1
N YexpHexpPexp − [I O]

]

yexp(θs) (51)

A scalar measure of the holographic error for all orders N can be expressed by a

vector norm. Below, the trace

||σ||2 = Tr{σσT} (52)

will be used instead, to allow for an elegant simplification: As the result of the

hermitian transposition, yexp(θs)y
T
exp(θs) can be contracted. Preferably the scalar

error measure includes all possible source positions (θs), which can be expressed

by a surface integral. In this integral the orthonormality property (5) reduces this

contracted term to an identity matrix.

∫

S2

yexp(θs)y
T
exp(θs) dθs = I (53)

A normalization term 1
4π

for plane waves is required to compensate for the squared
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absolute amplitude gained by the surface integral itself:

∫

S2

dθs = 4π

The energy of the error signal is dependent on the spherical harmonics order N .

Another normalization term with regard to energy is derived by calculating the

squared norm of the spherical harmonics vector ||yN ||2. Dividing the error by this

norm introduces a normalization to the energy.

The trace introduced in (52) equals the squared Frobenius norm [Wei09]

Tr{AAT} = ||A||2F

and so the normalized scalar holographic error ||σN,exp|| is

||σN,exp||2 =
1

4π

1

||yN ||2
||P−1

N H−1
N Y −1

N YexpHexpPexp − [I 0]||2F (54)

This error vanishes for identical matrices Y −1
N and Yexp, and is dependent on the

sampling order N , on the frequency k, on the microphone positions itself, and on

the allowed spatial bandwidth exp.

8.6 Interpretation of the Holographic Error

The formulation of a holographic error permits the comparison of different micro-

phone arrays. The spatial sampling scheme determined by the layout of the mi-

crophones on the surface and its influence on the accuracy of the holography can

be studied for every frequency k. Examination of various real-world effects can be

simulated and the influence of gain and positional errors can be estimated prior to

building the actual array, as shown below in section 9.

The very tempting comparison between arrays of different orders N is not valid

though. The error identifies only the detected amount of aliased harmonics in the

output signal and not the total amount possible. For example a spherical harmonic

of order 24 could cause aliasing in another harmonic of order 12. If the microphone

array was to decompose the distribution into harmonics of up to order 10, this aliased

part will not get detected in the error. However, it is possible to compare layouts

of identical orders, as shown in figure 15 for closed-sphere arrays using cardioid

microphones arranged in either an icosahedron with six microphones on each tile, as
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Figure 15: Holographic error ||σN,exp||dB for two different array geometries at order
N = 6 and cardioids around a rigid sphere

shown in figure 11 and abbreviated “m120”, and for a hyperinterpolation layout of

100 points, named “hi100”. Both arrays are evaluated at a maximum decomposition

order of N = 6.

The holographic error becomes zero for an exact reproduction of the incident wave,

which translates to a value of −∞ on a decibel scale. If the result bears no re-

semblance to the original wave, or if no signal is present at all, the error value of

one equals 0 dB. A request for the holographic error to be smaller than a certain

value will restrict the usable frequency range of both layouts. While this limit is

the result of spatial aliasing for high frequencies, numerical problems and noise is-

sues will drastically limit the array’s lower frequency range as already shown in the

discussion of holography filters in section 5.2. No psycho-acoustic evaluation of this

error has been made so far, and a general limit for its value cannot be stated yet. It

is also important to point out that the holographic error takes the entire processing

chain into account, considering the influence of the holography and radial filter on

the accuracy of the result.

The truncation error τN(krd) and holographic error ||σN,exp||2 must not be combined

into an overall error measure due to their different nature. The truncation error gives

the deviation in energy caused by finite order sampling of a distribution on the array
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surface. The holographic error in turn describes the energy difference between the

actual sound source and its replica due to aliasing. The effect of the holographic

error may have a deeper impact on the listener, since aliasing can induce wrong

spatial information, whereas truncated spectra merely lack angular resolution.
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9 Array Imperfections

The error measures derived in this work are helpful in the evaluation of array im-

perfections inherent to an array and its hardware. The position of the microphones

themselves can only be determined with a certain tolerance. As with any multi-

channel audio application, the similarity of the gain and transfer functions within

channels is crucial. By modification of the virtual microphone signals in the error

equations, different conditions and deviations are simulated.

9.1 Deviations in Actual Microphone Positions

Given the mechanical challenges when constructing spherical microphone arrays it is

only possible to match the specified capsule positions with a finite degree of accuracy.

In the formulation of the holographic error the capsule positions determine the

values of the spherical harmonics matrix Yexp. Random variation of their angular

arguments leads to a simulation of inaccurate capsule placement and results in a

higher holographic error. Simulated deviations of up to ±4◦ are shown in figure 16.

The deviations have a higher impact on the low frequency performance. For big

wavelengths, the phase difference between the microphones is generally very small.

This leads to the high gains in the holography filters already discussed. Changes

in microphone positions cause big perturbations in the phase differences for low

frequencies. These effects are negligible if the holographic error is used to determine

an upper frequency limit though.

9.2 Gain Mismatch

In every actual microphone array realization, imperfections in the signal path of

individual channels are a major reason of concern. The effects of gain mismatch

are examined by including a diagonal matrix G of random gain factors in the error

equation (54).

||σN,exp|| =
1√
4π

1

||yN ||
||P−1

N H−1
N Y −1

N G YexpHexpPexp − [I 0]||F (55)

Figure 17 gives this holographic error for different random gain ranges. Here the

influence is much more devastating. The misalignment is especially severe for low

frequencies which is due to the small differences detected with closely spaced sensors

at long wavelengths. The high gain of the holography filter causes the gain deviations

to be amplified even more.

49



-70

-60

-50

-40

-30

-20

-10

0

63 200 632 2k 6.3k 20k

dB

Hz

Positions vary by +/- degrees, N=2, rk=45mm, rd=69mm

0 deg
1 deg
2 deg
3 deg
4 deg

Figure 16: The effect of capsule position deviations on the holographic error for the
“m120” layout at order N = 2 and cardioids around a rigid sphere
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Figure 17: Holographic error considering gain mismatches for the “m120” layout at
order N = 2 and cardioids around a rigid sphere
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10 Implementation

The algorithms and transforms discussed in this thesis can be implemented using

digital signal processing software on general purpose computers. An ideal numerical

computation package suited for this task is GNU Octave [Oct]. Being an interpreted

language it is not optimized for computation efficiency. Fast prototyping of algo-

rithms, easy visualization of data and its open and cost-effective GPL license [Gpl07]

and broad user-base make it a perfect solution. A software suite of several Octave

functions and scripts has been compiled. The decomposition into spherical harmon-

ics and radial filtering alongside scripted soundfile operations were implemented.3

Figure 18 gives an overview of the steps required to listen to a holographic represen-

tation of a recorded sound field as presented in the last sections. The entire process

can be separated into two parts: The decomposition and filtering on one side, and

the holophonic reproduction for example via loudspeaker arrays or beamforming on

the other side. The stage in the processing chain at which the audio data can be

stored to memory is variable. The transform into the spherical harmonics domain

is done according to matrix Y −1
N whose elements are determined by the angular

position of the microphones. The open or rigid structure of the array and the type

of microphones influence the filter matrix HN . The source radius determines the

values of the filter matrix PN , which can be simplified in a far field assumption (70).

10.1 Twofold Transform and Block Filters

The filter matrices HN and PN were already defined as diagonal matrices consist-

ing of entries dependent on the spherical harmonic order and frequency. The filter

equations give a spectrum in real and imaginary values which can be used as scaling

factors for the Fourier transformed audio signals by complex multiplication. In the

implementation presented here this complex multiplication of spectra was employed

in a block filter approach. The block filter matrices H
†
N and P

†
N have a slightly

different form, holding the corresponding values already inverted. The block fil-

ter technique has several drawbacks which are less prominent for long DFT sizes.

More advanced filter design solutions such as the bilinear transform and the impulse

invariance method are discussed in [Pom08].

The discrete time domain input samples xL(t) from the L microphone channels can

be combined into a L x Nsamps matrix X.

3More information can be found on the author’s website. See: http://plessas.mur.at
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Figure 18: Processing structure for spherical harmonic transform, holography and
radial filtering with optional beamforming. The spectrum χN resembles the distri-
bution at the array radius. The filter HN returns the holographic spectrum bN .
The radial filter matrix PN then yields the source amplitude spectrum φN at an
outer radius. Beam forming with a steering vector sN allows to selectively listen to
the source amplitudes at an angular position on this outer radius.
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X =









x1(t0) . . . x1(Nsamps)
...

. . .
...

xL(t0) . . . xL(Nsamps)









(56)

This matrix can be transformed into the frequency domain by a discrete Fourier

transform (DFT ), the result being a matrix with dimensions L x NDFT :

DFT{X} = XDFT =









x1(ω0) . . . x1(NDFT )
...

. . .
...

xL(ω0) . . . xL(NDFT )









(57)

The discrete spherical harmonics matrix YN consists of elements determined by the

microphone positions θL and has a layout already described in equation (33), with

dimensions L x (N + 1)2.

YN =

















Y 0
0 (θ0) Y −1

1 (θ0)Y
0
1 (θ0)Y

1
1 (θ0) ... Y N

M (θ0)

Y 0
0 (θ1) Y −1

1 (θ1)Y
0
1 (θ1)Y

1
1 (θ1) ... Y N

M (θ1)

...

...

Y 0
0 (θL) Y −1

1 (θL)Y 0
1 (θL)Y 1

1 (θL) ... Y N
M (θL)

















The pseudoinverse Y −1
N of this matrix has the dimensions (N + 1)2 x L and is used

in the discrete spherical harmonic transform (DSHT ) to obtain χDFT , which has

dimensions (N + 1)2 x NDFT and holds the spherical wave spectrum of the Fourier

transformed microphone signals.

χDFT = Y −1
N XDFT

This twofold transform provides a matrix layout which permits filtering using ele-

ment wise multiplication. The required filter matrices hold a different coefficient for

every frequency ω and every spherical harmonic. The holography filter matrix HN

got defined in section 6.2. Its block filter variant H
†
N has dimensions (N+1)2 x NDFT

and consists of column vectors with already inverted coefficients for every frequency

ω.

H
†
N =















h−1
0 (ω0) h−1

0 (ω1) . . . h−1
0 (NDFT )

h−1
1 (ω0)

. . . . . .
...

...
...

. . .
...

h−1
N (ω0) . . . . . . h−1

N (NDFT )















(58)
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The radial filter matrix P was already introduced in equation (42), has constant

values for all frequencies and holds copies of an identical column vector, having

dimensions (N + 1)2 x NDFT . If plane waves are assumed, its block filter variant

P
†
N holding already inverted values has the shape

P
†
N =













(4π)−1 (4π)−1 . . . (4π)−1

(4πi)−1 (4πi)−1 . . . (4πi)−1

...
...

...
...

(4πiN)−1 (4πiN)−1 . . . (4πiN)−1













(59)

The entire processing chain using discrete Fourier transform and block filtering, with

· denoting element wise multiplication, can be implemented as

ΦDFT = P
†
N · H†

N · χDFT (60)

ΦDFT = P
†
N · H†

N · Y −1
N XDFT (61)

The matrix ΦDFT can be transformed back into a time domain matrix Φ of dimen-

sions (N + 1)2 x Nsamps holding the angular source amplitudes at the outer radius.

This processing has been implemented using GNU Octave for short sample lengths

captured in impulse response measurements, which are discussed in the following

section 11.

10.2 Beamforming

In order to listen to the results of acoustic holography a holophonic loudspeaker

layout such as Ambisonics can be used, sampling the spectrum ΦN at discrete

points and reproducing it with loudspeakers. Another approach is to sample the

spectrum at a single point only and change the angular position θs of this point.

This resembles a steerable beam, implemented by multiplication of ΦN with a static

spherical harmonics vector sN(θ). This steering vector consists of all harmonics

evaluated at the steering angle. The inner product resembles a weighted sum of

spherical harmonics and results in a beam that can be freely positioned. It returns

the playback signal, a time domain signal vector l(t):

l(t) = ΦN sN(θ) (62)

For infinite spherical harmonics this beam would be a narrow impulse as shown in

the orthogonality property (5). Limited order beams are an inner product of two

spherical harmonics spectra and result in a band-limited angular impulse. These
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Figure 19: Implementation of a beam steering scenario of order N = 3 using Pure
Data. Controls for the inclination and rotation angles of the beam sN(θ) are shown
as sliders. A graphical representation of the beam pattern helps to identify sidelobes.

beams have a wider main lobe and sidelobes dependent on the maximum order N .

The beam pattern for orders N = 1 − 3 is given in figure 20.

This beamforming approach has been implemented using the programming language

Pure Data [Puc97]. A screenshot of its user interface is shown in figure 19.
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Figure 20: Beam pattern for orders up to N = 3 showing absolute values. Neigh-
boring lobes have alternating signs and phases.

56



11 Array Hardware and Tests

One essential goal of this thesis is to explore the theory developed in the previous

sections using actual hardware. Microphone arrays can be used in many different

applications, for example in speech transmission, filtering and processing. The aim

of this section is to verify the usability of the algorithms in music recording. This

application imposes high demands on the frequency bandwidth and noise levels of

the sensors.

As collaboration between the Institute of Electronic Music and Acoustics – IEM Graz

Austria, the Center for New Music and Audio Technologies – CNMAT, and Meyer

Sound Laboratories, both Berkeley, California, an actual array implementation has

been tested. This array is of the “m120” layout already shown in figure 11 and

consists of a rigid sphere with 120 cardioid microphones at a slightly larger radius.

This core is complemented by four cantilevers holding 24 omnidirectional capsules

at several bigger radii. The tests conducted in this thesis have focused on the

cardioid “m120” core itself. The microphone signals are amplified and converted into

the digital domain inside the array hardware itself. An ethernet protocol transfers

multiplexed signals as UDP packets to a host computer for further processing and

storage.

11.1 Impulse Response Measurements

As part of a test recording with this array, several 120-channel impulse responses

have been captured. They identify the transfer functions of a system consisting

of the loudspeaker, the room and the array itself. The anechoic chamber of the

Hafter Auditory Perception Lab at the University of California in Berkeley provided

a reflection free environment. Impulse responses were taken using the exponential

swept sine technique as introduced by Farina in [Far00], played through a Meyer-

sound HM-1 loudspeaker. Figure 21 gives an impression of the test setup. In the

results given in the next section, the spacing between loudspeaker and microphone

array is 1.29 meters.

11.2 Holographic Visualization

Evaluating the amplitude spectrum φN by steering a beam along all angles and

plotting the output signal magnitude, a visual and holographic representation of

the entire sound field is obtained. This spectrum was derived with a plane wave

model for the filter matrix PN . The horizontal axis corresponds to the rotational

angle along the equator. The vertical axis denotes the elevation angle ranging up
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Figure 21: Test setup with array and coaxial loudspeaker in an anechoic chamber
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to the north pole and down to the south pole. The color plots given in this section

show the magnitude of the impulse response taken. The magnitude is evaluated for

selected frequencies. The color chart given in figure 22 is used to identify the linear

normalized magnitude.

Figure 22: Linear color chart ranging from 0 on the left to 1 on the right

The plot shown in figure 23 correctly identifies the loudspeaker position at rotation

270◦ and elevation 0◦. Processing with low spherical harmonic orders results in a

wide main lobe and a prominent sidelobes. The mirror image observed in the left

half of the plot is the result of a sidelobe. This is in accordance with the beam

pattern already given in figure 20, identifying a major sidelobe at N = 1 and ±180◦.

The same frequency at increased order N = 2 is shown in figure 24, displaying a

more narrow mainlobe and less prominent sidelobes.
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Figure 23: Low order decomposition at N = 1

Figure 24: Decomposition at N = 2
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Figure 25: Spatial aliasing at a high frequency and order N = 2

Spatial aliasing is detected for a high frequency of 17 kHz and order N = 2, as can

be seen in figure 25.

At order N = 3 the high gains of the holography filter matrix boost the noise floor

at low frequencies as shown for 128 Herz in figure 26, rendering the result useless.
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Figure 26: Noise floor at a low frequency and order N = 3
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11.3 Results and Possible Improvements

The impulse response measurements are summarized in figure 27. Each column

resembling a different spherical harmonic decomposition order and the plots are

given for multiple frequencies. The trade-off between high spatial bandwidth and

amplified background noise is inherently visible.

Figure 27: Comparison of angular magnitude at different orders
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A solution to this problem is achieved by using the decomposition orders at their

optimal frequency ranges. The result of this parallel processing is shown in 28.

Low harmonic orders with moderate filter gains are used for low frequencies. Higher

orders are applied in higher frequency ranges, giving more detailed spatial resolution.

The noise floor of the microphone determines the lowest usable frequency in every

band. The signal-to-noise ratio therefore constitutes the major limiting factor for

the overall performance of the array.

Figure 28: Parallel decomposition at different orders for different frequency bands.
Gray areas are filtered out.
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12 Summary

This thesis offered an in-depth review of spherical microphone arrays. The applica-

tion of spherical harmonics in audio processing and their use in microphone arrays

results in a complete spatial description of the recorded sound field via acoustic

holography. Spherical arrays are universal sensors for measurements and sound

recording alike. The independence between decomposition and playback schemes is

a major strength, as well as the scalability of the harmonic order employed. The

construction of a microphone array is a complex task and requires careful planning

and simulation of the layout. This is simplified by the definition of holography filters

for different architectures and the discussion of finite resolution sampling and lim-

ited spherical harmonics. The simulation of a variety of arrays helps to understand

the relation between the design parameters. Error measures for spatial resolution as

deducted in this work lead to a classification and invite further study and listening

tests. The influence of noise inherent to any sensor is shown and a possible solution

is suggested. The reproduction of a holographic recording using either multichannel

loudspeaker setups or virtual microphones by means of modeling and beamforming

opens an entirely new and exciting field of applications and future research. The

holophonic reproduction of music in its performance space will get a more common

sensation in the near future.
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A Appendix: Functions and Figures

A.1 Spherical Bessel Function

The solution to the spherical Bessel equation exists as two types, the spherical Bessel

function of the first kind with integer order n [Wei09]

jn(x) = (−1)nxn

(

d

x dx

)n
sin(x)

x
(63)

and the spherical Bessel function of the second kind (also known as spherical Neu-

mann function) [Zot09a]

yn(x) = (−1)n+1xn

(

d

x dx

)n
cos(x)

x
(64)

A.2 Spherical Hankel Function

The spherical Hankel Function of the first kind with integer order n is defined as

[Wil99, p.194]

h(1)
n (x) = jn(x) + iyn(x) (65)

and of second kind, for real values x, and ∗ denoting complex conjugation:

h(2)
n (x) = h(1)

n (x)∗ (66)

A.3 Derivatives of Spherical Bessel and Hankel Functions

Derivatives of the above functions exist as recurrence equation for fn = jn, yn, h
(1)
n

and h
(2)
n

Since [Wil99, p.197]
2n+ 1

x
fn(x) = fn−1(x) + fn+1(x) (67)

and

f ′
n(x) = fn−1 −

n+ 1

x
fn(x) (68)

these two can be combined:

f ′
n(x) =

n

x
fn(x) − fn+1(x) (69)

66



A.4 Far Field Assumption

The assumption of plane waves is given by the following relation in [Zot09a]

kr ≫ N(N + 1)

2
(70)

describing the common asymptotic behavior of the spherical Bessel and Hankel

functions as an indicator for far field conditions. For low orders n it simplifies to

kr ≫ 1, and is shown in figure 29.
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Figure 29: The condition kr = 1 is shown for frequency versus radius. All sources
whose characteristics lie above the line can for low orders be simplified as emitting
plane waves [Zot09a].
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